CAF® ELASTOMERS / SILICONE PASTES AND GREASES

Bonding, sealing, lubrication, protection CAF®/Pastes and Greases/Primers

Performance, reliability, real cost effectiveness ...

- > Ranges tailored to meet your needs
- Room temperature Vulcanizing Elastomers
- □ One-component RTV-1 CAF®
- Accelerated RTV-1: CAF® AXAD
- Pastes and greases
- Adhesion primers

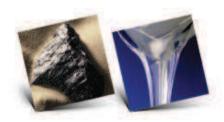
Functions	Properties
Assembly/bonding	Modular from adhesion through to release.
Sealing	Resistance to automotive oils and fluids over a wide temperature range. Easy spreading.
Electrical insulation	Outstanding stability of dielectric properties over a wide temperature range.
Lubrication	Over a wide range of temperatures.
Damping / Anti-vibration	Damping and rebound resilience.
Thermal protection	Resistance over a wide temperature range.

> Technical service adapted to the most demanding markets

From "product" approval to after-sales technical service, including prototype production

With very high-performance equipment and unique know-how, our teams can validate the technical solution in the laboratory in terms of all industrial issues of bonding, sealing and lubrication before testing on-site with your teams and determining the optimal solution with a view to final approval.

Before any industrial launch, limited prototype series can be produced internally by our technical laboratories or in cooperation with an application robot manufacturer. Our technicians can then provide service to our customers to give them the assistance and advice they need throughout the production phase.



> A team of experts at your service, backed up by a specialist distributor network

Bluestar Silicones is a team of silicones experts backed up by a specialist distribution network that is regularly trained in the latest innovations in this field, listening to your needs on a day-to-day basis, by your side to provide the best technical and economic bonding, sealing and lubrication solutions.

Silicones technology

for sealing, lubrication and industrial bonding

> Renowned expertise

On the strength of 50 years experience in silicones technology, Bluestar Silicones offers it's industrial customers an extensive range of products to meet their increasingly demanding requirements, both in terms of performance and reliability, as well as value for money.

> Innovation strategy based on partnership and cross-fertilization of technologies

Bluestar Silicones has set itself the mission of working with it's partner customers to develop tailor-made solutions with them whose properties give the best possible response to their functional requirements. Besides its expertise in silicones technology, Bluestar Silicones gives its customers access to all the other technologies and expertise in the Bluestar Group.

Silicones...A surprising material

Macromolecules with unlimited structural properties

Silicones have a chemical structure that is based on alternating atoms of silicon and oxygen. The originality of silicones compared with natural silica resides in the fact that the silicon atoms in silicones carry organic groups that contain carbon.

According to the nature of these organic groups and production and formulation conditions, the products obtained are extremely varied: their final texture can be fluid, viscous or pasty, elastomeric or rigid.

Between mineral and plastic

Silicones are different from other organic polymers, and notably plastics, due to the presence of silicon, a semi-mineral element, and their Si-O- bond. The bonds that the silicon creates with the oxygen to form the backbone of macromolecules are exceptionally stable: they are much more difficult to break than carbon-carbon bonds in organic polymers.

Stable, high-performance polymers

Silicones outperform most other polymers: their remarkable spreadability combined with outstanding resistance to extreme temperatures, UV and IR radiation as well as to many other outside factors, place them among the best performing polymers available.

> Safety, protection of health and the environment

Our Health, Safety and Environment policy is one of the foundations of industrial excellence. It is based on a high-performance management system combining transport of hazardous materials with safety, environmental and industrial health aspects. This system enables us to record the results in Bluestar Silicones International, confirming our place among the top chemicals groups worldwide in terms of safety.

Pa

> Present throughout the world

With production sites spread over three continents (Europe, America and Asia) and a worldwide logistics chain, Bluestar Silicones can provide quality products and services throughout the world, stable in terms of performance and adaptable to each application.

> Quality assurance worldwide

Bluestar Silicones rolls out its quality policy according to the ISO 9001 V 2000 standard backed up by a management system associated with a continuous progress approach.

Lean Manufacturing tools and the Six Sigma methodology are used in this respect for our main product lines. Our worldwide entities (headquarters, laboratories or R&D activities, sales offices and production sites) are all certified to ISO 9001 V 2000.

F-69486 Lyon cedex 03 Tel. + 33 (0)4 72 13 19 00 Fax + 33 (0)4 72 13 19 83

Customer Service

France, Belgium, Luxembourg, the Nederlands Bluestar Silicones France SAS

55, rue des Frères Perret - BP 22 F-69191 Saint-Fons cedex Tel. + 33 (0)4 72 73 74 75 Fax + 33 (0)4 72 73 76 45

Italy

Bluestar Siliconi Italia SpA

Via Archimede, 602 I - 21042 Caronno Pertusella (Va) Tel. + 39 02 964 14 353 Fax + 39 02 964 50 209

South America

Bluestar Silicones Brasil Ltda Av. Maria Coelho Aguiar, 215

Bloco B - CENESP 05804-902 Sao Paulo SP Brazil Tel. + 55 11 3741 8860 Fax + 55 11 3741 9539

Germany, Switzerland, Austria Bluestar Silicones Germany GmbH

Quettinger Strasse 289 D -51381 Leverkusen Tel. + 00 49 2171 5009 0 Fax + 00 49 2171 5009 67

Spain, Portugal Bluestar Siliconas España SA

Vic 3, Poligono Industrial La Florida E - 08130 Santa Perpetua de Mogoda (Barcelona)

Tel. + 34 93 504 02 600 Fax + 34 93 560 80 49

USA - Canada Bluestar Silicones USA Corp

8 Cedar Brook Drive Cranbury NJ D08512 - 7500 - USA Tel. 1 609 860 3766 Fax 1 609 860 0139

United Kingdom, Ireland Bluestar Silicones UK Ltd

Wolfe Mead, Farnham Road Bordon, Hampshire GU35 0NH Tel. + 44 14 20 606 000 Fax + 44 14 20 606 060

Norway, Sweden, Denmark, Finland Bluestar Silicones Scandinavia A/S

Dronningensgate 6 N - 0152 Oslo Tel. + 47 22 91 07 61 Fax + 47 22 91 07 64

Asia Pacific Regional office

Bluestar Silicones Hong Kong Trading Co., limited

29/F, 88 Hing Fat Street Causeway Bay, Hong Kong Tel. 00 852 3106 8200 Fax 00 852 2979 0241

China office

Bluestar Silicones Shangai Co., limited 3966 Jin Du Road

Xin Zhuang Industrial Zone Shangai 201108, China Tel. 00 852 3160 2720 Fax 00 852 2979 0241

The information contained in this document is given in good faith and based on Bluestar Silicones current knowledge. Bluestar Silicones makes no representation or warranty as to the accuracy, completeness of such information or as to the compatibility of such information with the user's intended application: information is supplied on an "sa-is" basis and is not binding on Bluestar Silicones. Nothing contained herein is intended as a recommendation to use the products so as to infringe any patent. Bluestar Silicones assumes no liability for users' violation of patent or other rights and disclaims any liability for loss, injury or damage which may result from the use of the products. Therefore, information contained herein must not be used as a substitute for necessary prior insts which are the sole responsibility of the user and which alone can ensure that a product is suitable for a given use.

Bluestar Silicones France SAS

21, avenue Georges Pompidou F-69486 Lyon Cedex 03 - France Tél : +33 (0)4 72 13 19 00 - Fax : +33 (0)4 72 13 19 88 www.bluestarsilicones.com

Bluestar Silicones CAF® products

> Several product ranges to meet your needs

- CAF® products (also called RTV-1 products) are one-component, silicone elastomers that cure at room temperature at various rates.
- Either acetic, oxime or alcohol-type, CAF® products have various viscosities ranging from fluid products to thixotropic and including a self-leveling version.
- They provide outstanding mechanical properties and adhesion over wide temperature ranges (from -70°C to +350°C according to the product) and very good resistance to natural ageing (UV, weathering, salt mist).
- Acetic CAF® products can be accelerated by adding an activator to give very rapid setting rates: products in the CAF AXAD range.

> Industrial and professional range

- Assembly and repair on automated industrial production lines
- Sealing/bonding for mass production applications requiring high service levels (occasional or prolonged contact with chemicals and lubricants, temperature differences, etc.) making automated processing possible.
- Supplies for professionals (installers, assemblers, heating engineers, electricians, mechanics, general professionals and specifically in the renovation
- General assembly providing sealing, anti-vibration properties, bonding, damping, etc.

> High-performance assembly and protection range

Sealing, bonding and protecting assemblies subject to high constraints in terms of adhesion, temperature and/or corrosion and UV resistance.

> Maintenance range

Maintenance of industrial sites or off-shore platforms.

Repair/maintenance of air, rail, maritime fleets.

Automotive repair for professionals and consumers.

> Protection, coating and potting range

Insulation, coating, potting and sealing of electrical and electronic assemblies.

CAF® Applications

		Sealing bonding							Electrical protection				Coating			Maintenance		
		Rheology	Adhesive	Self-adhesive	High-temperature adhesion	Non-corrosive	Quick-setting	Insulation	Coating	Potting	Sealing	Non-slip	Release coating	Thermal protection	Automotive	Electricity	Aeronautics – marine – rail	
	CAF 2	F																
	CAF 220/CAF 22 0X	NF		П														
CAF 30	CAF 30	NF																
	CAF 4	NF	П															
	CAF 33	NF	П												П			
professional range	CAF 44	NF																
	CAF 99	NF																
	CAF 44 NF ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■																	
	CAF 520	NF														•		
	CAF 30 AXAD	NF																
	CAF 505	NF																
	CAF 510	NF																
	CAF 50	NF																
High-performance	CAF 8	F																
assembly and	CAF 25	NF																
protection	CAF 36	NF																
	CAF 8 AXAD	F																
	CAF 33 AXAD	NF																
	CAF 99 AXAD	NF																
	CAF 2 fluid	F																
Protection,	CAF 4 dispersion	F																
coating and potting	CAF 542 fluid	F																
	CAF 7037	F																
Maintanana	CAF 1	F																
Maintenance, servicing and repair	CAF 3	NF																
co. c.omy una ropuli	CAF 730	NF																

 $\begin{aligned} F &= Flowing \\ NF &= Non\text{-}Flowing \end{aligned}$

CAF® Properties

		Industrial and professi											
		CAF 2	CAF 220* CAF 22 0X	CAF 30	CAF 1 Extra fluid	CAF 4	CAF 33						
	Product category	Flowing, self-adhesive, neutral	Non-flowing, self-adhesive	Non-flowing, adhesive	Flowing	Non-flowing, adhesive	Non-flowing, adhesive						
	Main characteristics	Self-leveling	Elongation	Quick-setting	Fluid, heat stability, quick-setting	Mechanical properties	Thixiotropic						
	Color	Translucent	White-trans-black	White-trans-black	Red	Off-white	White-trans-blac						
	Cure-type	Oxime	Oxime	Acetic	Acetic	Acetic	Acetic E						
	Specific gravity at 25°C (1)	0,99	1,03	1,04	1,11	1,16	Acetic 1,04 50 50 < 2 mm						
Moderates Toperties Final Compound Service Curing Final Compound Service Curing Final Curing Final Curing (7 days) Final Curing (7 days) Final Curing (7 days) Final Curing (7 days) Final Curing Final Curing (8 days) Final Curing Final Curing Final Curing (8 days) Final Curing Final	Viscosity (mPa.s) (2)	80 000	-	-	7 500	250 000	. <u>.</u> •						
20.0.0 0ag	Extrusion (g/min) (9)	-	80	CAF 30	50								
	Flowability (4)	260 sec	< 2 mm	< 2 mm	-	4 mm	< 2 mm						
	Skin formation time (min)	12	8	6	7	10	6 1						
Cured compound (5)	Setting time for a 2 mm thickness (h)	16	8	6	6	5	e his PI						
	Cured thickness after 24 h (mm)	3	3,6	4,2	4,3	4,5	4,3						
	Shore A hardness for 6 mm thick section (points) (8)	18	20	20	54	37	6 G setting of the set						
Mechanical	Secant modulus for 100% elongation (MPa) (7)	0,3	0,45	0,6	2,2	0,8	0,6 ords						
properties after	Tensile strength (mPa) (7)	0,7	1,5	2,2	3	3,8	2,5						
curing (7 days)	Elongation at break (%) (7)	250	450	500	110	290	500						
	Tear strength (kN/m) (8)	1,8	4	5	4	4,5	5,4						
	Shear strength (MPa) (9)	0,4	1	1,5		1,2	1,4						
	Type of break RC (cohesive)/ RA (adhesive)	CF 100%	CF 100%	CF 100%	AF	CF 95%	CF 100%						
	Lower service temperature (°C)	- 50	- 55	- 60	- 65	- 65	- 65						
Physical properties	Maximum continuous service temperature, 1000 h (°C)	150	200	250	250	225	- 65 BSSO E S						
after curing	Maximum peak service temperature, 72 h (°C)	250	250	300 (black)	275	250	300 (black) 900 High						
Storage	Shelf life from the production date (months)	10	18	24	24	24	24 €						

⁽¹⁾ ISO R 1183, DIN 53479, NM 703 (2) Brookfield NF T 76105, ASTM D 445 (3) NM 495 A 3 mm / 3 bars (4) Thixo: Boeing S 7502 NM 459 (mm), flowing: MIL S 880 2D, NM 458 (sec or min) (5) Temp. 23°C, relative humidity 50%

⁽⁶⁾ ISO R 868, DIN 53505, ASTM D 2240, BS 903 (A7), NFT 46003, NM 471 (7) ISO R 37 (H2), DIN 53504, ASTM D 412, BS 903 (A2), NFT 46002 (H2), NM 470 (8) ASTM D624 Specimen A, NM492

⁽⁹⁾ Aluminum AG3 specimen, 1 mm thick joint, NM748

nal range High-performance assembly and protection										Protection, coa	ting and potting	Maintenance, servicing, repair								
CAF 44	CAF 99	CAF 240*	CAF 520	CAF 30 AXAD	CAF 505	CAF 510	CAF 50	CAF 8	CAF 25	CAF 36	CAF 8 AXAD	CAF 33 AXAD	CAF 99 AXAD	CAF 2 fluid	CAF 4 dispersion	CAF 542 fluid	CAF 7037	CAF 1	CAF 3	CAF 730
Non-flowing	Non-flowing, adhesive	Non-flowing, self-adhesive, neutral	Non-flowing, self-adhesive, neutral	Non-flowing, self-adhesive		lowing, sive, neutral	Thixiotropic Self-adhesive, neutral	Flowing, adhesive	Non-flowing, self-adhesive, neutral	Non-flowing, adhesive	Flowing, self-adhesive	Non-flowing,	self-adhesive	Flowing, self-adhesive	Flowing, adhesive	Flowing, adhesive	Flowing, non-adhesive, neutral	Flowing, adhesive	Flowing, adhesive	Non-flowing, neutral
High Mechanical properties and fluid resistance	High hardness and heat stability	High consistency, low MEKO content*	Fast kinetics and good adhesion	Accelerated kinetics, high elongation	High el	ongation	Good adhesion and mechanical properties	High heat stability	High heat stability	High heat stability	Accelerated kinetics, heat stability	Accelerated kinetics, high elongation	Accelerated kinetics, good mechanical properties	Self-leveling	Sprayable	Fluid, release coating	Release coating	Heat stability	Non-slip	Thixiotropic, mechanical properties
Grey	Black-ivory	Black	Translucent	White-black	Translucent	Black-white-grey	Black	Red	Black	Red	Brick red	Black	Black-ivory	Translucent	Off-white	Translucent	Red	Red	Translucent	White
Acetic	Acetic	Oxime	Alcoxy	Activated acetic	Alcoxy	Alcoxy	Alcoxy	Acetic	0xime	Acetic	Acetic	Activated acetic	Activated acetic	Oxime	Acetic	Acetic	Oxime	Acetic	Acetic	Oxime
1,03	1,1	1,25	1,02	1,04/1,43	1,03	1,38	1,25	1,14	1,18	1,02	1,14/1,43	1,04/1,43	1,11/1,43	1	1,02	1,01	1,1	1,12	1,01	1,02
170	100	- 20	- 50	-/-	- 80	30	160	22 000	- 70	- 120	20 000/ -	-/-	-/-	30 000	6 500	15 000	50 000	250 000	140 000	- 120
170 < 1 mm	120 < 2 mm	30 < 3 mm	< 3 mm	- < 5 mm	< 2 mm	< 3 mm	160 1 mm	- 30 sec	70 < 3 mm	130 ≤ 5 mm	-	- ≤ 5 mm	- ≤ 5 mm	-	-	- 30 sec	-	- 5 min	- de 2 to 12 min	> 120 ≤ 2 mm
7	6	7	5 to 8	4	10	10	15	8	8	4	4	4	3	12	12	9	30	7	8	7
- /	O	1	3100	4	10	10	10	0	0	4	4	4	3	12	12	9	30	,	0	,
8	7	6	7	-	-	15	16	6	6	6	-	-	-	16	4	6	6	6	5	7
4	4	3,3	4	-	4	3	2,5	4,5	3,2	4,5	-	-	-	3	-	4,9	3,5	4,3	4,5	4,6
38	55	34	15	24	17	24	33	34	38	30	36	25	51	18	34	25	22	47	26	25
1,9	2,3	0,8	0,3	0,6	0,35	0,5	0,7	0,8	0,8	0,7	0,8	0,6	2,3	0,3	0,7	0,5	0,5	2	0,5	0,5
2,9	5	1,9	1,1	2,3	2	1,4	2,1	2	2,7	3	1,6	2,4	4,3	0,7	3,6	1,1	2	4,4	1,3	1,9
280	200	460	550	500	750	600	350	250	300	500	180	500	235	250	310	220	300	200	260	400
7 1,1	9,8 2,6	7 1,2	0,6	5 1,8	- 0,9	0,6	8,5 1,7	6 0.8**	6 1,3	10	6,5	6 2,1	10 2,17	1,8 0,4	4,2 0,6	0,2	3,3 0,25	1,8	2,5 0,5	0,2
AF	2,6 CF	1,2 CF 100%	0,6 CF 100%	1,8 CF 100%	0,9 CF 100%	0,6 CF 100%	1,7 CF 100%	0,8*** CF 100%	1,3 CF 100%	CF 100%	CF 100%	2,1 CF 100%	2,17 CF 100%	- 0,4	U,6 CF	0,2 CF 80%	0,25 AF	1,8 CF 100%	0,5 CF 100%	U,2 AF
- 60	- 65	- 60	- 60	- 65	-	- 60	- 60	- 65	- 50	- 60	- 65	- 65	- 70	- 50	- 65	- 60	- 60	- 65	- 60	- 55
200	250	200	150	180	180	180	185	275	260	275	250	180	250	150	200	200	225	225	200	200
250	275	230	150	250	180	200	220	300***	300	300***	300	250	275	250	225	225	250	300	225	225
24	18	12	12	18	12	12	6	24	12	24	18	18	18	10	24	18	12	24	18	12

CF = Cohesive Failure
AF = Adhesive Failure
Adhesive: self-adhesive to aluminum, glass, enamel, ceramics:
for other surfaces it is recommended to use primers (see the Adhesion
Primer datasheet).

 * Methylethyl Ketoxime (MEKO) content <1%

** 7 days at RT + 1 h at 240°C *** 15 h, 320°C 15 min, 350°C

> CAF® products in the Bluestar Silicones range, high-performance products with many advantages

- Outstanding bonding properties on a wide variety of surfaces (glass, metal and plastics).
- Very easy to use in substitution applications or to supplement traditional pre-formed joints.
- Competitive cost (materials costs, limited processing and storage costs, etc.).
- Outstanding heat stability over a wide temperature range (- 70°C to + 350°C).
- Very good natural ageing resistance: long-lasting mechanical properties (sealing joints and very long-lasting flexible bonding applications).
- High insulating and thermal protection capacity.
- Good dielectric properties.
- Very chemically inert.

CAF® products are sold in various packs including 100 g tubes, 22 – 223 litre drums and 260 ml to 310 ml cartridges.

As for all of our products, our direct sales network, backed up by our local specialist distributors, provides high-performance services.

